[Faculty of Science
5 Universiteit Utrecht Information and Computing Sciences]

The Usability of Static Type Systems

Jurriaan Hage

Department of Information and Computing Sciences, Universiteit Utrecht
J.Hage@uu.nl

June 22, 2020

Static type systems

» Statically typed languages come equiped with an intrinsic
type system, preventing some structurally correct programs
from being compiled

» Well-worn slogan: “well-typed programs can't go wrong”
> type incorrect programs = the need for diagnosis

» Which properties it enforces, depends intimately on the
language
» Cf. does every function have the right number of
arguments in C vs. Haskell

5&\\“’%}) [Faculty of Science
EN % Universiteit Utrecht Information and Computing Sciences]
2 NS

What is type error diagnosis?

» Type error diagnosis is the problem of communicating to
the programmer that and/or why a program is not type
correct

» This may involve information

» that a program is type incorrect
which inconsistency was detected

which parts of the program contributed to the inconsistency
how the inconsistency may be fixed

vV vy

» Traditionally, functional languages have more room for
inconsistencies = at least some attention was paid to type
error diagnosis

5&\\“’%}) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
3 NS

Example: one missing character

pExpr = pAndPrioExpr

<|> sem_Expr_Lam -- Semantics for lambda expressions
($ pKey "\\"
(x)pFoldrl (sem_Lamlds_Cons, sem_Lamlds_Nil) pVarid
(x)pKey "=>"
() pExpr

The error message that results:

ERROR "BigTypeError.hs":1 - Type error in application

% Expression : sem_Expr_Lam <$ pKey "\\" <*> pFoldrl (sem_LamIds_Cons,sem_
LamIds_Nil) pVarid <*> pKey "->"

x Term : sem_Expr_Lam <$ pKey "\\" <*> pFoldrl (sem_LamIds_Cons,sem_
LamIds_Nil) pVarid

*** Type : [Token] -> [((Type -> Int -> [([Char],(Type,Int,Int))] -> I

nt -> Int -> [(Int, (Bool,Int))] -> (PP_Doc,Type,a,b,[c] -> [Levell,[S] -> [S1))
-> Type -> d -> [([Char], (Type,Int,Int))] -> Int -> Int -> e -> (PP_Doc,Type,a,b
,f -> £,[S] -> [S]), [Token])]

#% Does not match : [Token] -> [([Char] -> Type -> d -> [([Char], (Type,Int,Int)
)] -> Int -> Int -> e -> (PP_Doc,Type,a,b,f -> £,[S] -> [S]), [Token])]

&\\‘Wﬁ)) . [Facul.ty of S'ciem:e
= b = Universiteit Utrecht Information and Computing Sciences]
N

4 AN

GPL'’s follow Lehmann’s 6th law

» Java has seen the introduction of parametric polymorphism
(and type errors suffered)

> Java has seen the introduction of anonymous functions
» Languages like Scala embrace multiple paradigms

» Martin Odersky's “type wall": unless complicated type
system features are balanced by better diagnosis,
programmers will flock to dynamic languages

» The type system of Haskell is growing towards a

dependently typed system, making it more powerful, but
also harder to use

5&\\“’%}) [Faculty of Science
% &) % Universiteit Utrecht Information and Computing Sciences]
5 NS

at’s more

» Even Sun did not implement Java 1.5 faithfully
» And neither did jikes

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

S more

» Even Sun did not implement Java 1.5 faithfully
» And neither did jikes

> Is Scala a small language?

[Faculty of Science
& Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

at's more

» Even Sun did not implement Java 1.5 faithfully
» And neither did jikes

> Is Scala a small language?

» How many Haskells can our planet support?

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

at's more

» Even Sun did not implement Java 1.5 faithfully
» And neither did jikes

> Is Scala a small language?

» How many Haskells can our planet support?

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]

o = = = E DA

Embedded Domain Specific Languages

» Embedded (internal a la Fowler) Domain Specific
Languages are achieved by encoding domain-specific
syntax inside that of a host language.

» Some (arguable) advantages:

» familiarity host language syntax

> escape hatch to the host language

» existing libraries, compilers, IDE's, etc.
» combining EDSLs

» At the very least, useful for prototyping DSLs

&\\‘Wﬁ)) [Faculty of Science
% &) é Universiteit Utrecht Information and Computing Sciences]
7 NS

A major challenge for EDSLs

v

Achieving domain specific error diagnosis

v

An implementation of the DSL should communicate with
the programmer about the program in terms of the domain

» domain-abstractions should not leak

v

Error diagnosis is also necessary in an external setting, but
there we have more control.

» Can we achieve this control for error diagnosis?
&\\‘Wﬁ,) [Faculty of Science
% &) é Universiteit Utrecht Information and Computing Sciences]
8 N

9

Philosophically...

> Aristotle is to have said “teaching is the highest form of
understanding”

» To me type error diagnosis is all about explaining the type
system to programmers
» If we can do that well, then we can say we really

understand the type system. Just getting something to
work is not enough.

5&\\“’%}) [Faculty of Science
% &) § Universiteit Utrecht Information and Computing Sciences]
N

Serendipity at work

» During the DOMSTED project we developed a new
approach to deal with higher-rank types and
impredicativity (PLDI '18/ICFP '20) that

» has a declarative specification

> only breaks code that can be easily fixed

> is not broken

> integrates well with all existing GHC type system extensions

» All from a motivation to be able to explain type
inconsistencies for higher-rank types

> Although we never got round to dealing with the error

diagnosis
» ICFP '20 is a variant that is also non-invasive to implement
in GHC
_*\\‘Wﬁ' [Faculty of Science
% &) % Universiteit Utrecht Information and Computing Sciences]
10 N

Example #1: Siblings heuristic in Helium

» Suggest type correct replacements for functions are
operators that are easily confused,
» () and (4++), and and foldl and foldr for novice Haskellers,
(.) and (++) for newcomers from PHP
(+) and (++) for newcomers from Java
(x and (x) for people new to Applicatives

vV vy

» Helium compiler takes a (editable) list of sibling pairs

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

11

Siblings in action

data Expr = Lambda [String] Expr
pExpr
= pAndPrioExpr
<|> Lambda ($ pKey "\\"
(*)many pVarid
(x pKey "->"
(* pExpr

Extremely concise:

(11,13): Type error in the operator <*
probable fix: use <*> instead

5&\\“’%}) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
12 N

Example #2: Specialized type rules in Helium

Control error diagnosis and solving order for
programmer-definable classes of expressions.

t2 == Parser sl a2 :

Q@expr.pos@: The rlght operand of <$> should be a
expression : Qexpr.pp@ parser
right operand : Q@y.pp@

type : @t20

does not match : Parser @sl1@ Qa2@

Q ﬁ)ﬁ . [Facul.ty of S'cience
%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

i3

Example

14

test :: Parser Char String
test = map toUpper($)"hello, world!"

This results in the following type error message (including the
inserted error message attributes):

ERY!

(2,21): The right operand of <$> should be a parses

expression : map toUpper <$> "hello, world!|
right operand : "hello, world!"
type : String

does not match : Parser Char String

s
%

KN

= o ..
= b % Universiteit Utrecht

[Faculty of Science
Information and Computing Sciences]

Example #3: Destructive updates (almost in
Helium)

» Haskell is lazy, and therefore can have only controlled
side-effects

» However, a type system can be defined that allows
destructive updates (PEPM 2008)

append [] ys=ys
append p@(x : xs) ys = p@(x : append xs ys)

» p@ in rhs reuses pattern-matched cons-cell

» Only valid if the first argument to append is unique:
nobody else can have access to the same list.

> Uniqueness type system verifies this for a given call to
append and defaults to append without re-use if that is
W not the case. [Faculty of Science

8 = Universiteit Utrecht Information and Computing Sciences]

15 %{ﬂ!§

- mple #4: Type error heuristics for GADTs in
Helium

» Popular type system extension in Haskell
> Includes also existential types

» Built upon Outsideln(X), implemented in Helium alongside
basic Haskell 98 solver

==

e

[Faculty of Science
Universiteit Utrecht Information and Computing Sciences]
(=] F = E E DA

ample #5: diagnosis with type level
programming in GHC

intid :: Int
intid = id True

[Faculty of Science
Information and Computing Sciences]

(=] [l = =

& Universiteit Utrecht

DEE

Example #5: diagnosis with type level
programming in GHC

intid :: Int
intid = id True

FormatEx.hs:17:9: error:
* Dear Mr. Kernighan.

between booleans and integers.
The argument and result types of

coincide: Bool vs. Int
* In the expression: id True

In this programming language we distinguish
Please ask your TA Bjarne for more details.

’id’ do not

In an equation for ’intid’: intid =

id True

17

[Faculty of Science

%ﬂ§ Universiteit Utrecht Information and Computing Sciences]

Research challenges in the short term

Address type error diagnosis in the Helium /GHC compiler for,
a.o.,

» higher-rank and impredicative types

» type class extensions (type class = ad-hoc overloading)

v

type families and related issues

And combinations of these

Construct realistic benchmarks
» Viscious circle in the making, ML

v

v

&\\‘Wﬁ)) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
18 N

Research challenges in the longer term

v

Type error diagnosis for subtyping based languages (Scala,
Java)

v

Type error diagnosis and proof assistance for dependently
typed languages

» Both harder and simpler

v

Type error diagnosis for gradually typed languages
» Both harder and simpler

v

Optimisation assistance for statically typed languages

5&\\“’%}) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
19 N

Research

challenges in the longer term

Type error diagnosis for subtyping based languages (Scala,
Java)

Type error diagnosis and proof assistance for dependently
typed languages

» Both harder and simpler
Type error diagnosis for gradually typed languages
» Both harder and simpler
Optimisation assistance for statically typed languages

Type system generator that includes error diagnosis in one
unified framework

5&\\“’%}) [Faculty of Science
% N é Universiteit Utrecht Information and Computing Sciences]
19 N

