
[Faculty of Science
Information and Computing Sciences]

The Usability of Static Type Systems

Jurriaan Hage

Department of Information and Computing Sciences, Universiteit Utrecht
J.Hage@uu.nl

June 22, 2020

[Faculty of Science
Information and Computing Sciences]

2

Static type systems

I Statically typed languages come equiped with an intrinsic
type system, preventing some structurally correct programs
from being compiled

I Well-worn slogan: “well-typed programs can’t go wrong”

I type incorrect programs ⇒ the need for diagnosis
I Which properties it enforces, depends intimately on the

language
I Cf. does every function have the right number of

arguments in C vs. Haskell

[Faculty of Science
Information and Computing Sciences]

3

What is type error diagnosis?

I Type error diagnosis is the problem of communicating to
the programmer that and/or why a program is not type
correct

I This may involve information
I that a program is type incorrect
I which inconsistency was detected
I which parts of the program contributed to the inconsistency
I how the inconsistency may be fixed

I Traditionally, functional languages have more room for
inconsistencies ⇒ at least some attention was paid to type
error diagnosis

[Faculty of Science
Information and Computing Sciences]

4

Example: one missing character

pExpr = pAndPrioExpr
<|> sem Expr Lam -- Semantics for lambda expressions
〈$ pKey "\\"

〈∗〉pFoldr1 (sem LamIds Cons, sem LamIds Nil) pVarid
〈∗〉pKey "->"

〈∗〉pExpr

The error message that results:

ERROR "BigTypeError.hs":1 - Type error in application

*** Expression : sem_Expr_Lam <$ pKey "\\" <*> pFoldr1 (sem_LamIds_Cons,sem_

LamIds_Nil) pVarid <*> pKey "->"

*** Term : sem_Expr_Lam <$ pKey "\\" <*> pFoldr1 (sem_LamIds_Cons,sem_

LamIds_Nil) pVarid

*** Type : [Token] -> [((Type -> Int -> [([Char],(Type,Int,Int))] -> I

nt -> Int -> [(Int,(Bool,Int))] -> (PP_Doc,Type,a,b,[c] -> [Level],[S] -> [S]))

-> Type -> d -> [([Char],(Type,Int,Int))] -> Int -> Int -> e -> (PP_Doc,Type,a,b

,f -> f,[S] -> [S]),[Token])]

*** Does not match : [Token] -> [([Char] -> Type -> d -> [([Char],(Type,Int,Int)

)] -> Int -> Int -> e -> (PP_Doc,Type,a,b,f -> f,[S] -> [S]),[Token])]

[Faculty of Science
Information and Computing Sciences]

5

GPL’s follow Lehmann’s 6th law

I Java has seen the introduction of parametric polymorphism
(and type errors suffered)

I Java has seen the introduction of anonymous functions

I Languages like Scala embrace multiple paradigms

I Martin Odersky’s “type wall”: unless complicated type
system features are balanced by better diagnosis,
programmers will flock to dynamic languages

I The type system of Haskell is growing towards a
dependently typed system, making it more powerful, but
also harder to use

[Faculty of Science
Information and Computing Sciences]

6

What’s more

I Even Sun did not implement Java 1.5 faithfully
I And neither did jikes

I Is Scala a small language?

I How many Haskells can our planet support?

[Faculty of Science
Information and Computing Sciences]

6

What’s more

I Even Sun did not implement Java 1.5 faithfully
I And neither did jikes

I Is Scala a small language?

I How many Haskells can our planet support?

[Faculty of Science
Information and Computing Sciences]

6

What’s more

I Even Sun did not implement Java 1.5 faithfully
I And neither did jikes

I Is Scala a small language?

I How many Haskells can our planet support?

[Faculty of Science
Information and Computing Sciences]

6

What’s more

I Even Sun did not implement Java 1.5 faithfully
I And neither did jikes

I Is Scala a small language?

I How many Haskells can our planet support?

[Faculty of Science
Information and Computing Sciences]

7

Embedded Domain Specific Languages

I Embedded (internal à la Fowler) Domain Specific
Languages are achieved by encoding domain-specific
syntax inside that of a host language.

I Some (arguable) advantages:
I familiarity host language syntax
I escape hatch to the host language
I existing libraries, compilers, IDE’s, etc.
I combining EDSLs

I At the very least, useful for prototyping DSLs

[Faculty of Science
Information and Computing Sciences]

8

A major challenge for EDSLs

I Achieving domain specific error diagnosis
I An implementation of the DSL should communicate with

the programmer about the program in terms of the domain
I domain-abstractions should not leak

I Error diagnosis is also necessary in an external setting, but
there we have more control.

I Can we achieve this control for error diagnosis?

[Faculty of Science
Information and Computing Sciences]

9

Philosophically...

I Aristotle is to have said “teaching is the highest form of
understanding”

I To me type error diagnosis is all about explaining the type
system to programmers

I If we can do that well, then we can say we really
understand the type system. Just getting something to
work is not enough.

[Faculty of Science
Information and Computing Sciences]

10

Serendipity at work

I During the DOMSTED project we developed a new
approach to deal with higher-rank types and
impredicativity (PLDI ’18/ICFP ’20) that

I has a declarative specification
I only breaks code that can be easily fixed
I is not broken
I integrates well with all existing GHC type system extensions

I All from a motivation to be able to explain type
inconsistencies for higher-rank types

I Although we never got round to dealing with the error
diagnosis

I ICFP ’20 is a variant that is also non-invasive to implement
in GHC

[Faculty of Science
Information and Computing Sciences]

11

Example #1: Siblings heuristic in Helium

I Suggest type correct replacements for functions are
operators that are easily confused,

I (:) and (++), and and foldl and foldr for novice Haskellers,
I (.) and (++) for newcomers from PHP
I (+) and (++) for newcomers from Java
I 〈∗ and 〈∗〉 for people new to Applicatives

I Helium compiler takes a (editable) list of sibling pairs

[Faculty of Science
Information and Computing Sciences]

12

Siblings in action

data Expr = Lambda [String] Expr

pExpr
= pAndPrioExpr

<|> Lambda 〈$ pKey "\\"

〈∗〉many pVarid
〈∗ pKey "->"

〈∗ pExpr

Extremely concise:

(11,13): Type error in the operator <*

probable fix: use <*> instead

[Faculty of Science
Information and Computing Sciences]

13

Example #2: Specialized type rules in Helium

Control error diagnosis and solving order for
programmer-definable classes of expressions.

x :: t1; y :: t2;

x <$> y :: t3;

...

t2 == Parser s1 a2 :

@expr.pos@: The right operand of <$> should be a

expression : @expr.pp@ parser

right operand : @y.pp@

type : @t2@

does not match : Parser @s1@ @a2@

...

[Faculty of Science
Information and Computing Sciences]

14

Example

test :: Parser Char String
test = map toUpper〈$〉"hello, world!"

This results in the following type error message (including the
inserted error message attributes):

(2,21): The right operand of <$> should be a parser

expression : map toUpper <$> "hello, world!"

right operand : "hello, world!"

type : String

does not match : Parser Char String

[Faculty of Science
Information and Computing Sciences]

15

Example #3: Destructive updates (almost in
Helium)

I Haskell is lazy, and therefore can have only controlled
side-effects

I However, a type system can be defined that allows
destructive updates (PEPM 2008)

append [] ys = ys
append p@(x : xs) ys = p@(x : append xs ys)

I p@ in rhs reuses pattern-matched cons-cell

I Only valid if the first argument to append is unique:
nobody else can have access to the same list.

I Uniqueness type system verifies this for a given call to
append and defaults to append without re-use if that is
not the case.

[Faculty of Science
Information and Computing Sciences]

16

Example #4: Type error heuristics for GADTs in
Helium

I Popular type system extension in Haskell

I Includes also existential types

I Built upon OutsideIn(X), implemented in Helium alongside
basic Haskell 98 solver

[Faculty of Science
Information and Computing Sciences]

17

Example #5: diagnosis with type level
programming in GHC

intid :: Int
intid = id True

FormatEx.hs:17:9: error:

* Dear Mr. Kernighan.

In this programming language we distinguish

between booleans and integers.

Please ask your TA Bjarne for more details.

The argument and result types of ’id’ do not

coincide: Bool vs. Int

* In the expression: id True

In an equation for ’intid’: intid = id True

[Faculty of Science
Information and Computing Sciences]

17

Example #5: diagnosis with type level
programming in GHC

intid :: Int
intid = id True

FormatEx.hs:17:9: error:

* Dear Mr. Kernighan.

In this programming language we distinguish

between booleans and integers.

Please ask your TA Bjarne for more details.

The argument and result types of ’id’ do not

coincide: Bool vs. Int

* In the expression: id True

In an equation for ’intid’: intid = id True

[Faculty of Science
Information and Computing Sciences]

18

Research challenges in the short term

Address type error diagnosis in the Helium/GHC compiler for,
a.o.,

I higher-rank and impredicative types

I type class extensions (type class = ad-hoc overloading)

I type families and related issues

I And combinations of these
I Construct realistic benchmarks

I Viscious circle in the making, ML

[Faculty of Science
Information and Computing Sciences]

19

Research challenges in the longer term

I Type error diagnosis for subtyping based languages (Scala,
Java)

I Type error diagnosis and proof assistance for dependently
typed languages

I Both harder and simpler

I Type error diagnosis for gradually typed languages
I Both harder and simpler

I Optimisation assistance for statically typed languages

I Type system generator that includes error diagnosis in one
unified framework

[Faculty of Science
Information and Computing Sciences]

19

Research challenges in the longer term

I Type error diagnosis for subtyping based languages (Scala,
Java)

I Type error diagnosis and proof assistance for dependently
typed languages

I Both harder and simpler

I Type error diagnosis for gradually typed languages
I Both harder and simpler

I Optimisation assistance for statically typed languages

I Type system generator that includes error diagnosis in one
unified framework

