
Addressing the "Engineering" in
"Software Language Engineering"

Bernhard Rumpe

Software Engineering

RWTH Aachen

http://www.se-rwth.de/

Software Engineering | RWTH Aachen2

RWTH Informatics: Facts and Figures

330

569

RWTH

professors

staff (FTE)

45.000students 4.600

40

Informatics

9.300

State: 06/2025

CHE-Ranking: in the top group in all categories

WiWo: places 1-3 top universities, for years

Guide2Research: 61. of 1255 of the top universities worldwide

8700 750first semester

students

Software Engineering | RWTH Aachen3

• Examples:
 UML: a general-purpose modeling language

 Java: a general-purpose programming language

 XML: a format for structured data

Software Language

• Software languages facilitate
 automated tool-based analysis, synthesis and code

generation on models

 re-use of models

 engineering productivity

 adaptivity, for example with Models@Runtime

• Any form of automation needs a precisely and

explicitly defined language.

A software language is a human readable and

computer processable language addressing a

particular problem.

A modeling language is a software language used

for modeling software or systems.

Software Engineering | RWTH Aachen4

GUI Modeling in MontiGem: For Information Systems, Digital Twins, IOT-Services

1 datatable "meinBenutzerInfoTabelle" {

2 columns < uit {

3 row "Benutzername" , <username (editable)

4 row "TIM-Kennung" , <tim (editable)

5 row "E-Mail Adresse" , <email

6 row "Kürzel" , <initials

7 row "Registrierungsdatum" , date(<registrationDate)

8 }

9 }

1 context User inv isPasswordValid:

2 password.length() < 5;

3 shortError: "Min. 5 Zeichen";

4 error: "Das Passwort muss aus mindestens 5 Zeichen

5 bestehen, hat aber nur " +

6 passwort.length() + " Zeichen. ";

GUI-DSL

OCL/P

D
a
ta

 s
tru

c
tu

re
U

s
e
r in

te
rfa

c
e

C
o
n
s
tra

in
ts

1 class User {

2 String username;

3 Optional<String> encodedPassword;

4 ZonedDateTime registrationDate

5 Optional<String> initials;

6 String email;

7 boolean authentifiziert;

8 Optional<String> timID;

9 }

CD4A

Software Engineering | RWTH Aachen5

• Planning audio-visual offers such as TV program and video-on-demand

• Restrictions in licensing contracts

• Risks: Misinterpretation and resulting planning errors

• DSL for
 Verification of plans

 Calculation of allowed planning periods

Description Language for Planning TV Broadcasting

01.01.18 30.06.18

Ende

Lizenzzeitraum

Verplanung des 1. und 4. Runs auf XYZ nicht zulässig

Verplanung des 1. und 4. Runs auf XYZ zulässig

Beginn

Lizenzzeitraum
00:00:00

23:59:59

20:00:00
22:00:00

1

2

3

4

5

Alternative 1:

Der 1. & 4. Run innerhalb von 01.01.2018 bis 30.06.2018 turnus immer von 20:00 bis

22:00 auf Nutzer XYZ

Alternative 2:

Alle Run innerhalb von 01.01.2018 bis 30.06.2018 turnus ohne auf Nutzer XYZ

1. Alternative:

with I. Drave, K. Hölldobler, O. Kautz, J. Michael

Software Engineering | RWTH Aachen6

Some Examples For Usage of DSLs

Software Engineering | RWTH Aachen7

Some Examples For Usage of DSLs

Software Engineering | RWTH Aachen8

Some Examples For Usage of Our DSLs

Software Engineering | RWTH Aachen9

Software Engineering: Our Mission: Improving Software and Systems Development

Energy Efficiency e.g. in Buildings

Digital Twin Cockpits

Information Systems:

Management Cockpits

Contracts, Regulations,

Laws, Requirements
Software, Tests, Deployment,

Architecture, Design, Agility,

Process management

Systems Verification

Systems Engineering

Software Languages,

DSLs, LowCode

Languages, methods, concepts, tools

and infrastructures for

• better and faster agile development,

• resulting in high quality products.

Software Engineering | RWTH Aachen10

A basic question:

How to engineer a DSL?

Software Engineering | RWTH Aachen11

Steps for Designing a Language

1. Understand the goal of the DSL:
What to be described?

2. Write down examples of the DSL

3. Identify reusable language components from a
language library

4. Build the language from components
using extension and adaptation as glue for
 abstract and concrete syntax,
 symbols: names, kinds and visibility,
 context conditions

5. What kinds of tools users need?
 editor, wizard,
 guidelines, metrics/smell analyzer,
 code generator, interpreter,
 diffing of models, etc.

* list item 3

* list item 5

* list item 8

Markdown

\alpha for �

LaTeX

int a = 0, b = 1;

while (a <= 100) {

System.out.println(a + " -> " + (a * a));

int next = a + b; a = b; b = next;

}

Java

Examples

Software Engineering | RWTH Aachen12

• Automaton language L1:• Lets start with one language L1

• The automaton has
 2 states and

 2 transitions

 describing a ping pong game

Language Extension - Starter

behavior automaton PingPong {

state Ping, Pong;

Ping -> Pong

Ping -> Pong

}

L1

SC

Software Engineering | RWTH Aachen13

• Automaton language L1 is extended by actions in L2:
 Actions are embedded at multiple places:

• L2 extends L1
 by new language concepts

• One model contains language concepts of both

languages

• Either L1 or L2 becomes the master language and

the other the multiply embedded sub-language

• Semantics, code generation is often defined together,

but ideally reuse L1-semantics, generators, etc.

should be possible

Language Extension

behavior automaton PingPong {

state Ping, Pong;

Ping -> Pong [strokes++]

Ping -> Pong [strokes++]

}

extends

L2

L1

SC

Software Engineering | RWTH Aachen14

• Automaton language L1 and action language L2 are

combined to a language embedding the actions into

the automaton:

• “Glue” can be added, e.g. the square brackets

• A new language L3 embeds

model concepts from L2 in

the language L2

• Models have parts conforming to sublanguages

• Languages L1 and L2 were independently developed

• Enables reuse and extension of languages

• Allows to define language components
 E.g. expressions, literals, type definitions.

Language Embedding

behavior automaton PingPong {

state Ping, Pong;

Ping -> Pong [strokes++]

Ping -> Pong [strokes++]

}

embeds

L3

L1 L2

SC

extends

Software Engineering | RWTH Aachen15

• Two models:
 An automaton and a java class sharing symbols

(e.g. strokes)

• An aggregated language

L3 combines L1, L2, and more …

• Models are independent artefacts
 they can be edited, reused, etc. individually

• Models are only semantically composed
 there is no model belonging “only” to L3

• Models syntactically refer to each other
 “Symbols” are imported / exported

Language Aggregation

aggregates

L3

L1 L2

SC

Java
class Game {

Player a, b;

int strokes = 0;

}

behavior automaton PingPong {

state Ping, Pong;

Ping -> Pong [strokes++];

}

Software Engineering | RWTH Aachen16

• MontiCore provides a basic set of components:
 www.monticore.de > Grammars

• and a set of complete languages:
 www.monticore.de > Languages > List of Languages

Language Component Library builds on Composition

A language component consists of

• one (or more) grammars

• handwritten extensions for integration

• additional handwritten Java classes (RTE)

• templates to generate code, reports,…

A language component library is a set of relatively

independent language components.

CommonLiterals

BasicTypes

Basics

Expressions

SI-Units

RegEx-Types

StateCharts

Statements

…

Software Engineering | RWTH Aachen17

• MontiCore generates from the grammar:
 Abstract Syntax Tree - Classes

 Parser + Tree Builder

 Visitors

 Pretty printing

• And furthermore:
 Symbol Tables

 Typecheck

 Context Condition Infrastructure

 Transformation engine, …

In MontiCore: Grammars define a DSL

• MontiCore Grammar (MC) has

 nonterminals,

 keywords “…”,

 grouping (…) ,

 alternatives … | … ,

 iteration …* , ...+ , (body | delimiter)*

 optionals …?

 token, etc.

grammar StateChart {

Automaton = "automaton" Name "{" Body "}"

Body = (State | Transition)* ";"

State = "state" Name "<<initial>>"?

Transition = from:Name "-" input:Name ">" to:Name }

1

2

3

4

5

MG

Software Engineering | RWTH Aachen18

• MontiCore generates only the delta and thus allows
 black-box reuse of language components
 (parser is an exception)

In MontiCore: Grammars extend other Grammars

• MontiCore allows to extend grammars
 and overwrite existing nonterminals (like in OOP)

grammar StateChart {

Automaton = "automaton" Name "{" Body "}"

Body = (State | Transition)* ";"

State = "state" Name "<<initial>>"?

Transition = from:Name "-" input:Name ">" to:Name }

1

2

3

4

5

MG

grammar MyStateChart extends StateChart, Expressions {

Automaton = "statemachine" Name "{" VariableDef* Body "}"

VariableDef = Name "=" Expression ";"

Transition = from:Name "[" pre:Expression "]" "-" input:Name ">" to:Name }

11

12

13

14

MG

extends grammar
redefines some NTs

Software Engineering | RWTH Aachen19

• Automaton language L1 is extended by actions in L2:
 Actions are embedded at multiple places:

• L2 extends L1
 by new language concepts

• … enables reuse of models

• … enables reuse of L1-functionality also operating on

L2-models

Conservative Language Extension

behavior automaton PingPong {

state Ping, Pong;

Ping -> Pong [strokes++]

Ping -> Pong [strokes++]

}

extends

L2

L1

SC

L2 is a AST (metamodel) conservative extension of

L1, if internal representation remains valid

L2 is a conservative extension of L1, if

Models(L2) are a superset of Models(L1)

Software Engineering | RWTH Aachen20

• Automaton language L2 does not allow the Java

actions of L2 anymore:

• L2 extends L1
 … by eliminating syntactic concepts

or additional CoCos

• Enables:
 Reuse of tooling and some of the models

 Simpler L2-functions possible

(e.g. generator may now be computable)

Language Restriction

behavior automaton PingPong {

state Ping, Pong;

Ping -> Pong [strokes++]

Ping -> Pong [strokes++]

}

extends

L2

L1

SC

L2 is a conservative restriction of L1, if

Models(L2) are a subset of Models(L1)

Examples:
• Forbid actions, forbid hierarchy of states

• Only basic types (integer …) used

• Disallow certain names,

Software Engineering | RWTH Aachen21

• Definition of modular language components

• Quick definition of domain specific languages (DSLs)

• Library of existing languages

• Code generation

• Assistance for analysis

• Assistance for transformations

• Pretty printing, editors (graphical + textual)

• Namespaces/scopes, typing (fits GPL, UML)

• Variability in syntax, context conditions, generation, semantics

MontiCore Language Workbench

with NJ, Alu, MSh, FDr, AHe, FDr, DS, KH, AW, PN, AR, HK, SV, HG, MS, AHo, IW, AHa, AP, ML, GV, MB et.al.

Software Engineering | RWTH Aachen22

• 9 Grammars; 24 * (22 +1) = 80 variants

• Explanation to be found at:
 MC/…/Grammars.md

 Details: Expressions.md

• ~100 nonterminals, most relevant: Expression

• Type checks implemented as visitors

• After parsing a small predefined

transformation is applied

• Example:

!(i+1 >= 3 * foo(1,0xFE,x))

MontiCore’s Expressions as Language Components

LDExpression

Basis

Assignment

Exp.
BitExp. SetExp.

Optional

Exp.

Common

Exp.

Java

ClassEx.

OCLExp.

Grammar Operators

CommonExp: / % + - <= >= == > < != ~. !. .?.:.

&& || ~.

AssignExp: ++ -- = += -= *= /= &= |= ^= >>= >>>= <<= %=

BitExp: & | ^ << >> <<< >>>

JavaClass: this .[.] (.). super .instanceof.

SetExp: .isin. .in. union intersect setand setor

OCLExp: forall exists any let.in. .@pre {.|.}

Option.Exp: ?: ?<= ?>= ?< ?> ?== ?!= ?~~ ?!~

Software Engineering | RWTH Aachen23

MontiCore’s Literals as Language Components

• 4 Grammars; 4 variants

• Explanation to be found at:
 MC/…/Grammars.md

 Details: Literals.md

• Used for primitives in Expression

grammars

• ~95 nonterminals, most relevant:
 Literal implements Expression

• Type checks implemented as visitors

• Example for an expression:

i + 1mm >= 3km/h * foo("!")

LD

Literal language examples:

MCCommonLit 3 -3 2.17 -4 true false

'c' '\03AE'

3L 2.17d 2.17f 0xAF

"string" "str\b\n\\"

"str\uAF01\u0001\377" null

MCJavaLiterals 999_999 0567 0x3F_2A

0b0001_0101 1.2e-7F

SIUnitLiterals 3km/h 2.7mg 1 km^2

3.54l m*deg/(h^2*mg)

MCLiterals

Basis

MCCommon

Literals

MCJava

Literals

SIUnit

Literals

Software Engineering | RWTH Aachen24

Types as Language Components

• 8 Grammars; 2*2*3*4 = 49 variants

• Explanation to be found at:
 MC/…/Grammars.md

 Details: Types.md

• ~30 nonterminals, most relevant:
 MCType all allowed kinds of types

 MCQualifiedName like in Java: a.b.Foo

 MCImportStatement like in Java: import a.b.*;

LD

Language examples:

MCBasicTypes boolean byte short int long char float double void Person a.b.Person

MCCollectionTypes List<.> Set<.> Optional<.> Map<.,.>

MCSimpleGenericTypes Foo<.> a.b.Bar<.,..,.>

MCFullGenericTypes Foo<? extends .> Foo<? super .>

MCArrayTypes Person[][]

SIUnitTypes kg m/s km^2

RegExTypes R"goo(d(ies)?|gle)" R"[^abx]+" // define possible values

MCBasic

Types

MCCollection

Types

MCSimple

GenericTypes

MCFull

GenericTypes

RegEx

Types

SIUnitTypes

4Math

SIUnitTypes

4Computing

MCArray

Types

Software Engineering | RWTH Aachen25

Summary: Component Hierarchy for Expression, Type and Literal

MCBasics

Overall Grammar Hierarchy for Expression, Type and Literals

15925 Variants possible

LD

Software Engineering | RWTH Aachen26

Statements as Language Components

• 10 Grammars; 90 variants

• Explanation to be found at:
 MC/…/Grammars.md

 Details: Statements.md

• ~45 nonterminals, most relevant:
 Statement all allowed

forms of statements

 MCBlockStatement includes also var. declaration

• All statements / actions (~ Java) covered

• Statement also include

Expressions, like i++ (when imported).

• Relies on Expressions, Types and others.

LD

MCStatements

Basis

MCAssert

Stm.

MCVarDec.

Stm.

MCReturn

Stm.

MCLow

LevelStm.

MCFullJava

Statements

Expression

Basis

OO

Symbols

MCBasics
MCBasic

Types

MCCommon

Stm.

MCSynchro

nizedStm.

MCException

Stm

MCArray

Stm.

Software Engineering | RWTH Aachen27

MontiCore Libraries of Reusable Language Components Build a Language Zoo:

Base Layer:

Components

Layer 2:

Focused

Languages

Layer 3:

“Multi-Viewpoint”

Languages

Expressions

LiteralsMCCommon Types

MCBasics Statements Cardinality

Completeness

SI Units

JavaLight
XML

Java JSONSequence D.
Class D.

Object D. OCL Feature D.

Neuronal

ANNA

C, C++, Python

UML

BPMNSysML
/ SpesML

Statecharts
__:

__:

__:

MontiArc

MontiGem

Software Engineering | RWTH Aachen28

statechart Car {

state EngineRunning

[!fuelIsEmpty] {

entry / {lightsOn();}

exit / {lightsOff();}

initial state Parking;

state Driving;

};

initial state EngineOff;

EngineOff -> EngineRunning on();

EngineRunning -> EngineOff off();

}

Statecharts

• Modeling of state-based behavior:
 states, state hierarchies, and invariants

 transitions with stimuli, conditions, and actions

 entry-, exit-, and do-actions

• Statecharts are mapped to code

through the state pattern

• Two key languages:
 TriggeredStatecharts for describing

automata with signal triggers

 UMLStatecharts supports

Statecharts with methods as triggers

• May import type, field, and function

symbols from other languages

• #of Nonterminals: 29

SCBasis

SCState

Invariants
SCActions

SCState

Hierarchy

LD

SCEvents

SCTransition

4Code

SC

DoActions

SCTransition

4Modelling

Triggered

Statecharts

UML

Statecharts

Software Engineering | RWTH Aachen29

Is the role of libraries in modelling underestimated?

Software Engineering | RWTH Aachen30

Role of Libraries in Language Definitions

• Language ~ set of wellformed models.

• Wellformedness is defined in two levels of

constraints:

1. Basic definition (context free syntax)

2. Context conditions (aka constraints)

Concept

model

Model
Language

Definition

defines

syntactic

structure

Software Engineering | RWTH Aachen31

Role of Libraries in Language Definitions

• A library ~ set of models that can be “imported”.

• A model library

extends the language vocabulary

• We distinguish:

 Language structure (such as given by a grammar)

 Language vocabulary:

 Usually lightweight extensions of a language that can

be defined within the language itself

Model B

well formed models

of the language

Model C

Concept

model

Model A
Language

Definition

defines

syntactic

structure

defines

syntactic

structure

relies on

(uses / imports)

Software Engineering | RWTH Aachen32

Role of Libraries in Language Definitions

• Examples for vocabulary definitions:

 Java allows to define classes, methods, variables

 CD’s allow to define classes,

 Statecharts: states, …

 Scala, C++ allow infix operations: .>>.

 Natural language has glossaries

• Good languages allow
 introduce new symbols,

 define “meaning” using the language itself,

• Model libraries
 1) modularize/decompose models to allow reuse

 2) allow lightweight language extension

Concept

model

Model

Library

of models

Language

Definition

defines

syntactic

structure

extends

vocabulary

well formed models

of the language

defines

syntactic

structure

Library-extended

language definition:

(1) syntax structure,

(2) context conditions, and

(3) external models (library)

Software Engineering | RWTH Aachen33

Extensible Language?

• A language is defined in three stages:

1. syntactic structure

2. context conditions

 well-formed models:

3. predefined, external models (libraries)

 library-extensible language definition

• Consequence:
 SLE needs to engineer extensible languages:

 Definition of symbols, their meaning, and their use

 Import / include / rely on other models

Concept

model

Model

Library

of models

Language

Definition

defines

syntactic

structure

extends

vocabulary

well formed models

of the language

defines

syntactic

structure

Library-extensible

language definition:

(1) syntax structure,

(2) context conditions, and

(3) external models (library)

Software Engineering | RWTH Aachen34

• MontiCore generates the full infrastructure for symbol

management including typecheck,

load/store symbol tables.

(and its also language compositional!)

In MontiCore: Grammars define where symbols are defined and used

• „symbol“ : here symbols are defined

• „Name@State“ : here State-symbols are used

grammar StateChart {

Automaton = "automaton" Name "{" Body "}"

Body = (State | Transition)* ";"

State = "state" Name "<<initial>>"?

Transition = from:Name "-" input:Name ">" to:Name }

1

2

3

4

5

MG

grammar StateChart {

symbol scope Automaton = "automaton" Name "{" Body "}"

Body = (State | Transition)* ";"

symbol State = "state" Name "<<initial>>"?

Transition = from:Name@State "-" input:Name ">" to:Name@State }

11

12

13

14

15

MG

Old:

Symbol enhanced grammar:

Software Engineering | RWTH Aachen35

• MontiCore automatically integrates handwritten

code via Design Patterns

• (and NOT via copy/paste into generated code)

Generation Chain (in MontiCore)

• MontiCore generates the full infrastructure for
 syntax tree,
 parsing,
 traversing/visitors,
 symbol management,
 typecheck,
 load/store symbol tables
 syntax tree transformations
 prettyprinting

grammar .java .class .jar

G1

language

G1

AST …

G1

AST, builder, mill,

visitor, etc.

G1

handwritten code

G1

grammar

generate

G1

handw. code

compile

Software Engineering | RWTH Aachen36

Modularity in the Generation Chain (in MontiCore)

G2

language

part

G2

AST …

G2

AST, builder, mill,

visitor, etc.

G2

handwritten code

G2

grammar
G2

handw. code

grammar .java .class .jar

G1

language

G1

AST …

G1

AST, builder, mill,

visitor, etc.

G1

handwritten code

G1

grammar

generate

G1

handw. code

compile

Software Engineering | RWTH Aachen37

• and reuse of handwritten code is without adaptation

Compositionality in the Generation Chain (in MontiCore)

grammar .java .class .jar

G1

language

G1

AST …

G1

AST, builder, mill,

visitor, etc.

G1

handwritten code

G1

grammar

generate

G1

handw. code

compile

G2

language

part

G2

AST …

G2

AST, builder, mill,

visitor, etc.

G2

handwritten code

G2

grammar
G2

handw. code

extends

may

use

G2

complete

language

tool

fat-.jar

• Generated parts are compositional:
 late binding of pre-generated/pre-compiled code

Software Engineering | RWTH Aachen38

Question:

Composition of backends:

generators resp. their artifacts?

Software Engineering | RWTH Aachen39

Generated Artifacts: They use, extend, configure each other: An Example

• Generator 1 creates class „Person“
 and functions for attribute “age”

• Generator 2 needs to know,
 how to assess „age“

 Here using “getAge()”

 and thus imports Person

• Gen.2 knows the result of Gen.1

• Gen.1 is independent of Gen.2

Software Engineering | RWTH Aachen40

Modularity of Code Generation: Collaboration between Generators

• Main Solution: Modular mapping of models,
 i.e. process only one model at a time:

completely decoupled generators

 code uses various design patterns

 let generators "communicate" via stored symbol table

• Stored symbol table contains information about the

mapping of a symbol to code

(typically CRUD using Freemarker templates)

• Advantage:
 Independent run; incremental re-run; efficient

(if no circular dependency)

• MontiCore doesn’t force to compose generator

backends, but keeps them independent &

communicating

Solution

approach:

CodeGene

rator2

Symbols &

code mapping

CodeGene

rator1

uses,

extends,

configures

Software Engineering | RWTH Aachen41

Question:

What can be done with such an infrastructure?

Software Engineering | RWTH Aachen42

GUI Modeling in MontiGem: For Information Systems, Digital Twins, IOT-Services

1 datatable "meinBenutzerInfoTabelle" {

2 columns < uit {

3 row "Benutzername" , <username (editable)

4 row "TIM-Kennung" , <tim (editable)

5 row "E-Mail Adresse" , <email

6 row "Kürzel" , <initials

7 row "Registrierungsdatum" , date(<registrationDate)

8 }

9 }

1 context User inv isPasswordValid:

2 password.length() < 5;

3 shortError: "Min. 5 Zeichen";

4 error: "Das Passwort muss aus mindestens 5 Zeichen

5 bestehen, hat aber nur " +

6 passwort.length() + " Zeichen. ";

GUI-DSL

OCL/P

D
a
ta

 s
tru

c
tu

re
U

s
e
r in

te
rfa

c
e

C
o
n
s
tra

in
ts

1 class User {

2 String username;

3 Optional<String> encodedPassword;

4 ZonedDateTime registrationDate

5 Optional<String> initials;

6 String email;

7 boolean authentifiziert;

8 Optional<String> timID;

9 }

CD4A

Software Engineering | RWTH Aachen43

Transformation from the Engineering Models to the Digital Twin

Eng. Models

derivation

010 0101 1 0 01 01 010 0 101

runtime data

MontiGem

StreamSensorData

Service A

Service B
specify

Digital Twin

data collection

Semantically

linked

e.g., real-

time control

e.g.,

predictive

maintenance

control

function

structure

Software Engineering | RWTH Aachen44

• … are essential for the progress of digitalization.

• Engineering a language means:
 language composition

 … refinement

 … embedding

 … aggregation

 … extension

 … derivation

 reusing language components

 libraries of language components

 tools

 And language variants + tools are almost for free

• Ludwig Wittgenstein (philosopher):

“The limits of my language are the limits of my world.”

Summary: Software Languages

