The (software) Language Extension Problem - LEP

Leduc, M., Degueule, T., Van Wyk, E., and Combemale B. The Software Language Extension Problem.
Softw Syst Model 19, 263-267 (2020). https://doi.org/10.1007/s10270-019-00772-7

Preprint: https://hal.inria.fr/hal-02399166

https://hal.inria.fr/hal-02399166

Language Kxtension Problem?

Thas problem informally refers to the capability of extending
the syntax and semantics of an existing language while reusing
its specification (e.g., grammars, semantic inference rules) and

implementation (e.g., parsers, interpreters).

Approaches for

software language extension?

Kxisting Approaches for Language Kxtension

Executable
Metamodeling

Flexible
Modeling

Software
Interfaces

Model-driven

Modularity
CBSE

Language
Formalisms

Groups

Family
Polymorphism

Programming Languages

Kxisting Approaches for Language Kxtension

(@) (b) (c) (d) (e)

base base base base base | base'
extension extension extension extension || extension' extension
extension'

All applicable at the specification and implementation levels. (a) mixes up the extension into

the base language, while (b)-(e) keep them separated and use explicit operators (e.g., references,
static/dynamic introduction) or glue code.

Taxonomy inspired from Erdweg, S., Giarrusso, P.G., Rendel, T.: Language composition untangled. In: LDTA 2012.

Specific ins and outs of
software language extension?

Ins and Outs???

Why !

Hard to evaluate and

compare the strengths

and weaknesses of

| . . .
Wty ¢ existing solutions.

Ins and Outs???

LEP is an attempt to define
language extensibility in the form
of a well-defined problem.

The Software Language Extension Problem

Manuel Leduc + Thomas Degueule . Eric Van Wyk - Benoit Combemale

Received: date / Accepted: date

Abstract The problem of software language extension
and composition drives much of the research in Soft-
ware Language Engineering (SLE). Although various
solutions have already been proposed, there is still lit-
tle understanding of the specific ins and outs of this
problem, which hinders the comparison and evaluation
of existing solutions. In this SoSyM Expert Voice, we
introduce the Language Extension Problem as a way to
better qualify the scope of the challenges related to lan-
guage extension and composition. The formulation of
the problem is similar to the seminal Ezpression Prob-
lem introduced by Wadler in the late nineties, and lift it
from the extensibility of single constructs to the exten-
sibility of groups of constructs, i.e., software languages.
We provide a comprehensive definition of the actual
constraints when considering language extension, and
believe the Language Ertension Problem will drive fu-
ture research in SLE, the same way the original Ezpres-
sion Problem helped to understand the strengths and
weaknesses of programming languages and drove much
research in programming languages.

Keywords domain-specific language - extension -
composition - expression problem

Introduction

With the advent of language workbenches, the prob-
lem of modular language extension has garnered con-
siderable interest from the research community in the
past decade. This problem informally refers to the ca-
pability of extending the syntax and semantics of an
existing language while reusing its specification (e.g.,
grammars, semantic inference rules) and implementa-
tion (e.g., parsers, interpreters). Various authors have
attempted to formalize this problem (e.g., |5]) but the
lack of a clear definition makes it hard to evaluate and
compare the strengths and weaknesses of existing so-
lutions w.r.t. a common, well-defined framework. This
paper is an attempt to define language extensibility in
the form of a well-defined problem.

From the Expression Problem to the Language
Eztension Problem

Philip Wadler coined the term “ Ezpression Problem” to
name a well-known problem in the programming lan-

guages community and this name has been in common

LEP is an attempt to define
language extensibility in the
form of a well-defined problem.

The Expression Problem

From: Philip Wadler <wadlerf@research.bell-labs.com>

The Expression Problem
Philip Wadler, 12 November 1998

The Expression Problem is a new name for an old problem. The goal is
to define a datatype by cases, where one can add new cases to the
datatype and new functions over the datatype, without recompiling
existing code, and while retaining static type safety (e.g., no
casts). For the concrete example, we take expressions as the data
type, begin with one case (constants) and one function (evaluators),
then add one more construct (plus) and one more function (conversion
to a string).

http://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt

An old problem going as far back as John Reynolds in 1975, given this name in 1998.

“The “expression problem” (EP) is now a classical problem in programming languages. It
refers to the difficulty of writing data abstractions that can be easily extended with both new
operations and new dala variants.”

-- B. Oliveira and W. Cook. “Extensibility for the masses: practical extensibility with object algebras”. In ECOOP’12. t

http://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt

EP Constraints

1. Extensibility in both dimensions: It should be possible to add new data variants and
adapt existing operations accordingly. Furthermore, it should be possible to introduce new
operations.

2. Strong static type safety: It should be impossible to apply an operation to a data variant
that the operation cannot handle.

3. No modification or duplication: Existing code should neither be modified nor duplicated.

4. Separate compilation: Compiling datatype extensions or adding new operations should
not encompass re-type-checking the original datatype or existing operations.

5. Independent extensibility*: It should be possible to combine independently developed

extensions so that they can be used jointly. b

* M. Zenger and M. Odersky. 2005. Independently extensible solutions to the expression problem. In FOOL ’12.

While the EP is merely a programming problem
concerning programmers and focusing on the

extensibility of a single datalype,

the LEP is a Software Language Engineering (SLE)
problem concerning language engineers and focusing on
the extensibility of languages (i.e., group of types).

13

Type group?

14

Type group?

Languages are group of mutually recursive (data) types
e [ixtension mechanisms requiert to ensure a safe and consistent extensibility of both the
syntax and the semantics, at the specification and implementation (incl. language tooling).

e (Concrete illustration from O0? Back to the 90’s: Bruce, K.B., Vanderwaart, J.:
Semantics-driven language design: Statically type-safe virtual types in object-oriented
languages. ENTCS 20 (1999) 50-75

15

Animal

food

::.‘+eat(f:Food)

Food

16

Ty

“ ’ 7?"1&

pe group?

Animal

) S foocli Food
N +cat (f:Food)
JAN
Animal a = Cow.new
FFood £ = Grass.new
a.eat (f)
Cow Hamburger

17

' Animal foocli ood
M +cat(f:Food)
JAN
Animal a = Cow.new
Food f = Hamburger.new
a.eat (f)
Cow Hamburger |

@@ﬁﬁ*ﬁ%

18

Animal
food
] T Food
+eat(f:Food)
‘ —?"
L\ JAN
Cow | Hamburger

ﬁl

19

Type group?

Semantics

>

a P
’ ExecFSM ” ’ExecGuarded FSM
® > @ --»>
FSM GuardedFSM

» Syntax

20

Type group?

Directions of Extensibility

variants

OOP - modify
classes to

4 add methods
OOP - new J FP - modify
subclasses @® < functions to
extension s add clauses

j‘ FP - new functions ’
base

operations

21

The (Software) Language Extension Problem

The Language Extension Problem (LEP) is a
new name for an old problem. The goal is to de-
fine a family of languages, where one can add
a new language to the family by adding new
syntax (i.e., new constructors for existing syn-
tactic categories as well as new categories) and
also new semantics over existing and new syn-
tax, while conforming to constraints similar to
those in the Exzpression Problem but specialized
to language extension.

Lifts the vocabulary from datatypes to languages
Add specific constraints to consider engineering practices, e.g., the distinction between the
specification and the implementation

22

LEP Constraints

1. Extensibility in both dimensions: It should be possible to extend the syntax and adapt
existing semantics accordingly. Furthermore, it should be possible to introduce new
semantics on top of existing syntax.

2. Strong static type safety: All semantics should be defined for all syntax.

3. No modification or duplication: Existing language specifications and implementations
should neither be modified nor duplicated.

4. Separate compilation: Compiling a new language (e.g., syntactic extension or new
semantics) should not encompass re-compiling the original syntax or semantics.

5. Independent extensibility: It should be possible to combine and use jointly language

extensions (syntax or semantics) independently developed. ”s

Language families: the holy grail

configure

—
Abstract Syntax
L Aastract ynlax)

- -
Core Expressions

o
Perfect Synchrony

State Machines

-
Semantics
—-——e oA

1

o
TimedTransitions

{ excludes

Abstract Syntax Variability

-y

= 1
Run-To-Con

Simultaneous Events

Semantic Variability

compose

.
Events Concurrency |
-

S ——e
| Concrete Syntax
e

Textual | Graphical

Concrete Syntax Variability

Language
Components

24

Take away messages

The LEP

e lifts the constraints drawn from the EP to the SLE context
e provides a framework to reason on language extension and its challenges

e helps the comparison of existing and future SLE contributions

Call for Action?

e collaborative refinement of the problem specification
e online review and classification of existing approaches

@manuel_leduc @tdegueul @ericvanwyk @bcombemale

Preprint: https://hal.inria.fr/hal-02399166 .

https://hal.inria.fr/hal-02399166

