
23/06/2020

1

N+1 CHALLENGES
FOR SLE

Friedrich Steimann@OOPSLE 2020
Fernuniversität in Hagen

Germany

outline

■ give up trees

■ tend to your meta-language

■ the metalevel is not the world of static

■ diversify

■ escape the empiricism trap

■ …

■ +1

GIVE UP TREES
or: embrace the modelling community

give up trees

■ not everything is a tree

■ just like not everything is a function

■ for everything is in fact a relation

■ just like everything is a graph

■ in modelling, a tree is just a degenerate graph

– undercut only by lists

trees vs. graphs

PL vs. SE (Albert Zündorf)

mathematical rigour vs. empiricism

hard science vs. soft science

give up trees give up trees

■ but trees are great

■ inductive definitions

■ inductive proofs

23/06/2020

2

so, why not use graphs
conjecture:

the linear nature of our language(s)
makes us prefer trees over graphs

text bla bla a(b, c) bla bla text

text bla bla {(a, b), (a, c)} bla bla text

needs building up a mental environment (dictionary)

a

b a

a
b

c

a
b

{(a, b), (a, a)}a(b, a)

a(b, “a”)

a

b c

The Graph Paradox:
In working with graphs, we resort to trees.

(i.e., we express the general in terms of the
special, while it should be the other way
round)

caused by language

give up trees

■ trees go with functions

■ like graphs go with relations

■ has SLE a preference for functional metalanguages?

■ adoption of functional PL constructs in language definitions and proofs
– Maybe and Either monads in Isabelle
– List monads, too?
– not needed in relational languages?
– are functions a source of accidental complexity?

■ if the linearity of metalanguages suggests trees, is progress slowed by the linearity
of metalanguages?

TEND TO YOUR META-
LANGUAGE

tend to your metalanguage

Guy Steele:
“It's Time for a
New Old Language”
(2017 ACM PPoPP Keynote)

23/06/2020

3

tend to your metalanguage

𝑒∗ 𝑒ଵ … 𝑒௡ 𝑒

■ what are these?

– “unenclosed sequence”, “unpackaged collection”

■ that we can still read this texts mean high redundancy

– can squeeze even more on a page

■ common metalanguage?

■ LaTeX!

– but that’s a meta-metalanguage

■ how about a standard metalanguage?

USLES

tend to your metalanguage

■ how about choosing one with precise syntax and semantics?

■ how about an executable one?

■ theorems and proofs about properties of the object language …

■ … become program verification (verification of the interpreter)

{P} S {R}

■ how about a programming language as metalanguage?

– Haskell?

– Coq?

how about PROLOG?

(S, E1 + E2) => (S1, V) :-
(S, E1) => (S2, V1),
(S2, E2) => (S1, V2),
V is V1 + V2.

𝑆, 𝑒ଵ ⇒ 𝑆′′, 𝑣ଵ

𝑆′′, 𝑒ଶ ⇒ 𝑆′, 𝑣ଶ

𝑣 = 𝑣ଵ + 𝑣ଶ

𝑆, 𝑒ଵ + 𝑒ଶ ⇒ 𝑆′, 𝑣

𝑆, 𝑒 ⇒ 𝑆′′, 𝑣

def 𝑓(𝑥) = 𝑒′

(𝑆ᇱᇱ,
𝑥
𝑣

𝑒ᇱ) ⇒ 𝑆′, 𝑣′

𝑆, 𝑓(𝑒) ⇒ 𝑆′, 𝑣′

(S, f(F, E)) => (S1, V1) :-
(S, E) => (S2, V),
def(F, V, E1),
(S2, E1) => (S1, V1).

:- ([x=1, y=2], x+y) => (S, V).
yes: S = [x=1, y=2], V = 3

:- ([x=1, y=2],x*y) => (S, V).
no

:- ([z=3], fak(z)) => (S, V).
yes: S = [z=3], V = 6

:- ([z=-1], fak(z)) => (S, V).
…

:- ([x=1],x+y) => (S, V).
no

is PROLOG relational?

with occurs-check turned on?

?- f(X) = Y, g(Y) = X.

23/06/2020

4

THE METALEVEL IS NOT
THE WORLD OF STATIC

or: make editing a discipline

the metalevel is not the world of static

■ static semantics (strong typing) are standard on the metalevel

■ what about dynamic semantics?

■ dynamic semantics for

– transformation (sure, the compiler)

– editing

– synthesis

– (incl. refactoring)

■ with various soundness guarantees for the object level

– change a program, guarantee that it still compiles

– change a language and its programs with it, with strong guarantees

DIVERSIFY
or: software language tools are not the only programs of interest

SLE
=

the metacircular science of metacircularity

we live on our own dog food

conjecture:

For a substantial number of students,
a compiler is the only program they have ever written
or even seen.

They view everything as a function/tree.

diversify diversify

■ ok for research in SLE

■ sufficient for having impact?

■ 80% of software is embedded

– security and realtime as important as safety

– persistence, distribution, and roll-back

■ compared with medicine (engineering), SLE has no impact over what is happening in
the wild

– medical societies control everything related to diagnosis and treatment

– we control nothing

– even though humankind is subjected to programmers’ doing

23/06/2020

5

conjecture:

To get impact, we need to embrace all software.

diversify

ESCAPE THE
EMPIRICISM TRAP

or: let’s formalize utility

escape the empiricism trap

■ from SE, student experiments, questionaires

■ instead find and establish good analytical models of judging the utility of SLE tools

■ not number of keystrokes, but perhaps number of decisions to be made

■ (game theory)

■ validate the model once, then work with it forevermore

■ (like the mouse model in pharmaceutics)

■ good models are hard to find (corona)

■ field of study is language

■ not a specific language, not even all exisiting languages, but all languages that can be conceived of

■ infinite study space

■ make the best of this freedom

■ stop doing things in a way that “because the proofs are easier” that’s a road to insignificance

escape the empiricism trap

■ medicine is evidence-based

– doctors want proofs

■ our formally proving is great

■ but restricts progress to the formally provable

■ drives progress to the formally provable

– I know how to prove it, so I propose it

■ how do I prove that x is good or bad?

escape the empiricism trap

■ empirical experiments

– hard to do

■ all our empirical experiments are psychological experiments

■ confounding factors hard to control

■ its mathematics are unknown (for many of us)

■ generalization is hard to show

escape the empiricism trap

■ medical (pharmaceutical) research works with models

– mouse model

■ each new treatment requires a new study on humans

■ each new treatment requires a new study on mice

■ one study showing that studies on mice allow predictions for humans

■ we can’t get mice to code

23/06/2020

6

escape the empiricism trap

■ programming with tools is a game

– with players programmer and tools

– each taking turns
■ tools provide clues

■ programmer decides

■ programming = working off one giant decision graph (or tree?)

■ find mathematical models

■ show how tools reduce the size of the graph

■ one final experiment showing that model is valid

HOW TO TYPE THAT DAMN
PARENT ATTRIBUTE?

or: if you can’t type this, what can you do?

how to type that damn parent attribute?

node type Root begin a : A; b : B end;

node type A begin parent() : Root end;

node type B begin a : A; parent() : Root end;

r1:Root

a1:A b1:B

a2:A

a1.parent().parent() static error
a2.parent().parent() static error

