
Domain-Specific Languages for Program Analysis

Mark Hills

OOPSLE 2015: Open and Original Problems in Software Language Engineering

March 6, 2014

Montreal, Canada

http://www.rascal-mpl.org

1

http://www.rascal-mpl.org

Overview

• A Starting Example: DCFlow

• Other Early-Stage Ideas

• Summary extraction from documentation

• Trace processing

• Discussion

2

Say you need a control flow graph…

10

y := 10

exit

15

y := 15

3

x := 3

x

true false

entry
entry

3
x := 3
x

exit

15
y := 15

10
y := 10

false true

3

Building control flow graph extractors

• First, define how to represent control flow graphs

• Then, pick a language — hopefully we can reuse the first part
for different languages, but maybe not…

• Next, define the control flow rules, using your favorite language
(such as Rascal, of course…)

• Finally, define something that uses the graph — this makes
sure the data structure is rich enough to be useful as well…

4

What if we want to work with another language?

• May be able to reuse base CFG definition (but maybe not)

• Cannot reuse flow definition (unless CFG def is the same and
features have identical semantics — the flow rules are specific
to the features being defined)

• Cannot easily reuse analysis (since CFG definition and
semantics differ)

5

What if we want to work with another language?

• May be able to reuse base CFG definition (but maybe not)

• Cannot reuse flow definition (unless CFG def is the same and
features have identical semantics — the flow rules are specific
to the features being defined)

• Cannot easily reuse analysis (since CFG definition and
semantics differ) 
 
So, we write the entire thing over again  
(and again, and again…)

6

DCFlow: Declarative Control Flow

• Declarative DSL for defining control flow rules

• Generates Rascal code to build intraprocedural control flow
graphs with reusable library of CFG concepts

• Provides basic visualization to allow graphs to be rendered in
GraphViz dot

• Provides ignore mechanism to indicate which language
constructs we are not trying to define

• IDE provides basic checking to aid user (with more coming)

7

DCFlow Architecture

DCFlow
Translator
(Rascal)

DCFlow
Definition

Source Program
(Input Language)

DCFlow Libraries
(Rascal)

Language-Specific
Functions (Rascal)

CFG Builder
Modules
(Rascal)

CFG Construction
(Rascal)

Control Flow
Graphs (Rascal)

CFG Visualization
(Rascal)

GraphViz
Visualizations
(GraphViz,dot)

8

Building up an example: plus

• What should plus do? 
 
 

9

binaryOperation(Expr left, Expr right, plus())

Building up an example: plus

• What should plus do? 
 

• Run left, then run right, then add them together 
 
 
 
 

10

binaryOperation(Expr left, Expr right, plus())

rule EXP::add = left --> right --> self;

Building up an example: plus

• What should plus do? 
 

• Run left, then run right, then add them together 
 

• That’s it! 
 
 

11

binaryOperation(Expr left, Expr right, plus())

rule EXP::add = left --> right --> self;

Something more complex: while loops

• What should while do? 
 
 
 
 
 
 

12

\while(Expr cond, list[Stmt] body)

Something more complex: while loops

• What should while do? 
 

• The exp is the first and last thing we should do

• A footer is useful as a target for break and continue

• We need a back-edge, and it would be nice to label others 
 
 
 

13

\while(Expr cond, list[Stmt] body)

Something more complex: while loops

• What should while do? 
 

• The exp is the first and last thing we should do

• A footer is useful as a target for break and continue

• We need a back-edge, and it would be nice to label others 
 
 
 

14

\while(Expr cond, list[Stmt] body)

rule STATEMENT::whileStat = create(footer),
 ^exp -conditionTrue-> body -backedge-> exp,
 exp -conditionFalse-> $footer;

Design Decisions

• Focus on abstract syntax trees (should  
almost work on Rascal concrete syntax,  
but there are some differences)

• Leverage reified types for generation and checking

• Try to ensure added features are general — don’t want to add
something just because PHP or Java needs it

• Make sure generated code is understandable — it should look
close to what you would write yourself

15

How about for other domains?

• Idea 1: Program tracing

• Internal DSL — goal is to build this as a library in Rascal

• Allow filter functions to keep or discard events of interest

• Use closures to support registration of handlers for specific events or
event patterns

• What we have now: rudimentary tracing for PHP programs using
Rascal and xdebug (running over TCP sockets)

16

How about for other domains?

• Idea 2: Summary extraction

• Libraries make it harder to analyze code, we may not know what
these libraries actually do

• Extract function/procedure/method summaries from existing
documentation — basic info such as signatures, types, maybe ability
to attach more advanced info

• No work on this yet, still deciding what makes sense — currently
works for PHP by extracting very generic HTML representation and
using Rascal to match over it

17

Related work

• “Extensible intraprocedural flow analysis at the abstract syntax
tree level”, Söderberg, Ekman, Hedin, Magnusson

• Uses attribute grammars to represent control flow

• Reference attributes represent edges

• Collection attributes represent inverse relations (e.g., pred)

• Higher-order attributes allow building new AST nodes (e.g.,
entry and exit)

Related work

• Spoofax: NaBL, language for incremental type checking

• DHAL and variants for data flow analysis

• Related conceptually — use domain-specific languages for
specific analysis-related tasks

• Direct language support: Rascal, TXL, Spoofax, ASF+SDF, etc

Discussion

20

Discussion: Some possible topics…

• What opportunities are there for creating DSLs for
program analysis? Which parts of the process would
be best for this?

• Which is best: internal or external? What
circumstances drive this?

• Is this even a good idea? Why not just use Rascal (or
something else, if you must…)

21

Which design decisions are important?

• Focus on abstract syntax trees (should  
almost work on Rascal concrete syntax,  
but there are some differences)

• Leverage reified types for generation and checking

• Try to ensure added features are general — don’t want to add
something just because PHP or Java needs it

• Make sure generated code is understandable — it should look
close to what you would write yourself

22

